Illuminance sensor, part 2: construction and calibration

Oskar Skog

October 20, 2021

Contents

1	Intr	roduction	4									
2	Cor	onstruction										
	2.1	PCB manufacturing	4									
	2.2	Cherry picked resistances for fixed dividers	5									
		2.2.1 Error in differential amplifier (IC3a)	5									
		2.2.2 Error in voltage to current conversion	6									
	2.3	Soldering	7									
		2.3.1 Potentiometers not fitting	7									
		2.3.2 Heatsink	7									
		2.3.3 Cleaning	8									
	2.4	Mounting	8									
	2.5	Test cables (and LDR)	8									
3	Fun	actional testing	10									
	3.1	Oscillation in the range limiter	10									
		3.1.1 More accurate simulations	10									
		3.1.2 Physical tests	10									
		3.1.3 Fixing the crossover distortion in the op-amps	11									
4	Me	easurements	12									
•	4.1	At home calibration and measurements	13									
	1.1	4.1.1 Equipment	13									
		4.1.2 Usage of desk lamp & calibration	14									
		4.1.3 Illuminance vs voltage	15									
		4.1.4 Time constant	18									
	4.2	Testing with proper light meter and Modbus TCP DAQ	21									
	4.3	Regression analysis	26									
		4.3.1 Repeated theory	26									
		4.3.2 Data	26									
		4.3.3 Models	26									
		4.3.4 Results	$\frac{1}{27}$									
		4.3.5 Reversing the formula and adding tolerance	33									
5	Sun	nmary and evaluation	35									

	5.1 5.2		$\frac{35}{35}$							
6	Ref	erences	38							
7	Cod	Code listings								
	7.1		39							
		1 0	39							
		10	44							
		_ 1 5	45							
			47							
		_ 11 7 17	49							
			50							
	7.2		51							
			56							
_		6 T.								
L	ıst	of Figures								
	1	Newly milled PCB	4							
	2	Schematic for the differential amplifier	5							
	3	Schematic for the transconductance amplifier	6							
	4	Potentiometer fitment issues	7							
	5	Soldered heatsink and thermal paste pre-applied to TO-220 device	7							
	6	PCB before and after cleaning	8							
	7	Adding washers to attempt to compensate for longer screws	8							
	8	LDR mounted in plastic tube from ballpoint pen	9							
	9	Two-pin Molex to bare wires for tests and LEDs for digital outputs	9							
	10	Power cable, with extra connector for range_select	9							
	11	Crimping process	9							
	12	With vs without C14	11							
	13	Before vs after adding resistors to mitigate oscillations	12							
	14	Modification to attempt to reduce cross-over distortion in op-amp	12							
	15	Power supply with LC filter	13							
	16	"Oscilloscope"	14							
	17	Usage of the modified desk lamp for controlled illumination	14							
	18	Scatter plots for 1 000 Lux range tested with phone	16							
	19	Scatter plots for 100 000 Lux range tested with phone	17							
	20	Measured signal of 5Hz flashes	19							
	21	Measuring τ on rising edge	20							
	22	Measuring τ on falling edge	20							
	23		22							
	24		23							
	25		24							
	26		25							
	27	v	28							
	28		29							
	29		30							
	30	<u> </u>	31							
	31		34							
	32		35							

List of Tables

1	Resistance values of all 22 $k\Omega$ and 470 $k\Omega$ resistors
2	List of test equipment
3	Illuminance/voltage data with phone
4	Rising time constant
5	Falling timeconstant
6	Regression analysis summary: typical sensitivity
7	Regression analysis summary: Evaluation of models
8	Regression analysis summary: Evaluation of datasets
9	Summarised data: 1k range voltage output
10	Summarised data: 100k range voltage output
11	Summarised data: current output
12	Summarised data: digital signals

1 Introduction

This is the second part of the project which is covering construction and testing of the prototype.

The execution is divided into three sections

- 1. Construction of the prototype
- 2. Testing that it actually works and fixing what needs fixing
- 3. Calibrating it and testing how well it performs
- 4. Summary and evaluation

2 Construction

2.1 PCB manufacturing

The PCB was manufactured successfully with the exception of the corner near the heatsink. All other problems are design related

- There is a milling failure on the upper left corner (bottom side), it does not cause any issues however.
- A 0.6 mm drill was substituted for a 0.7 mm drill.
- The holes for the carbon trimmer potentiometers (P1 and P4-P9) were later found to be too tight, but this is probably because of a design error.
- The heatsink had a really tight fit. The excess radius of the holes was apparently insufficient to cover the rounding errors.

Figure 1: Newly milled PCB

2.2 Cherry picked resistances for fixed dividers

Resistors for the 1:1 voltage dividers were cherry picked even though the tolerances were well within 1% (far better than the expected 5%)

R7	$21.98 \ k\Omega$	R9	$468.8 \ k\Omega$
R8	$22.01~k\Omega$	R10	$468.4~k\Omega$
R16	$21.98 \ k\Omega$	R14	$468.3 \ k\Omega$
R17	$21.93~k\Omega$	R15	$469.5~k\Omega$
R20	$22.00 \ k\Omega$	R18	$468.5 \ k\Omega$
R21	$22.02~k\Omega$	R19	$468.7~k\Omega$

Table 1: Resistance values of all 22 $k\Omega$ and 470 $k\Omega$ resistors

The equations later in this section were not used for cherry picking the resistors, the goal was simply to get R_1/R_2 ratios as close to 1 as possible but doesn't necessarily correspond to what will actually give the lowest possible error.

However, all of this is likely moot as many minor details such as input bias current and input offset voltage etc haven't been considered.

2.2.1 Error in differential amplifier (IC3a)

Figure 2: Schematic for the differential amplifier

The circuit is described by the following equation:

$$A\frac{R8}{R7+R8} - \left[(X-B)\frac{R9}{R9+R10} + B \right] = U_{offset}$$

 U_{offset} is not just the purely offset voltage but also includes X divided by the gain of the op-amp. This is at worst just a few millivolts.

The equation turned into a function X of A and B:

$$X = \frac{A \cdot R8 \cdot (R9 + R10) - B \cdot (R7 + R8) \cdot R10 - U_{offset} \cdot (R7 + R8) \cdot (R9 + R10)}{(R7 + R8) \cdot R9}$$

Calculating using the resistance values gives:

$$X = 1.00026 \cdot A - 0.999147 \cdot B - 1.99915 \cdot U_{offset}$$

What is actually wanted is a function X of A - B and B, not the common mode.

$$X = 1.00026(A - B) + 0.001108 \cdot B$$

0.11% of the LDR voltage gets added to the output. This is at worst 2.8 mV and such a tiny error is likely swamped by something else that has been overlooked.

2.2.2 Error in voltage to current conversion

Figure 3: Schematic for the transconductance amplifier

The circuit is described by the following equations:

$$X = \frac{U_{in}R18^{-1} + U_{out}R19^{-1}}{R18^{-1} + R19^{-1}} \cdot \frac{R20 + R21}{R21}$$
$$I_{out} = \frac{X - U_{out}}{P7}$$

With ideal components, the equations would be equivalent to:

$$X = \frac{U_{in} + U_{out}}{2} \cdot 2 = U_{in} + U_{out}$$
$$I_{out} = \frac{U_{in} + U_{out} - U_{out}}{P7} = \frac{U_{in}}{P7}$$

But in reality, the output current is ever so slightly affected by the burden voltage. I as a function of U_{in} and U_{out} is:

$$I_{out} = \frac{U_{in} \cdot R19 \cdot (R20 + R21) + U_{out} \cdot (R18 \cdot R20 - R19 \cdot R21)}{P7 \cdot (R18 + R19) \cdot R21}$$

The error becomes (assuming P7 is 125Ω)

$$\Delta I_{out} = U_{out} \frac{R18 \cdot R20 - R19 \cdot R21}{P7(R18 + R19)R21} = -0.00534 \ mA/V$$

2.3 Soldering

2.3.1 Potentiometers not fitting

P1 and P4 to P7 (V10-* and P10-*) did not fit in the holes. The drill diameter in the PCB layout is set to 40 mils (1.0 mm) but the holes should be 1.3 mm.

This has been solved by carefully cutting of one side of each lead. This process has been mostly successful.

On the left: maximum insertion depth. In the middle: modification of the leads. On the right: repair of accidentally snapped of lead

Figure 4: Potentiometer fitment issues

2.3.2 Heatsink

The holes in the PCB for the heatsink were a bit on the small side but the heatsink could be inserted without using unreasonable force. It could be soldered normally using an elevated temperature (near 400 °C) and some patience.

With the heatsink in place, the 7815 voltage regulator was inserted into its place and fastened to the heatsink using a computer case screw (6-32 UNC).

Figure 5: Soldered heatsink and thermal paste pre-applied to TO-220 device

2.3.3 Cleaning

After soldering the board was cleaned with alcohol. Cleaning removes flux residue which may be slightly conductive which maybe could interfere with the well balanced large resistors. But mostly this was done just because it looks nicer.

The soldering happened over two days and the PCB has been cleaned at home in between.

Figure 6: PCB before and after cleaning

2.4 Mounting

No 6.4 mm long self-tapping screws were available. The closest match were M3.5 by 9.5 mm. Some plastic washers were used as spacers to compensate for the longer screws.

Figure 7: Adding washers to attempt to compensate for longer screws

The washer below the board lifts it up slightly which helps around the missing fourth screw hole and also gives more space for the LDR lead.

Two washers are approximately as thick as the PCB which is 1.6 mm. In hindsight, four of these washers should have been used for each screw instead of just two.

2.5 Test cables (and LDR)

Figure 8: LDR mounted in plastic tube from ballpoint pen

Figure 9: Two-pin Molex to bare wires for tests and LEDs for digital outputs

Figure 10: Power cable, with extra connector for range_select

Figure 11: Crimping process

3 Functional testing

3.1 Oscillation in the range limiter

During a test some absolutely horrific oscillation was observed in the range limiting circuitry, this was with P4 set way wrong so the circuit needs to be tested more closely.

3.1.1 More accurate simulations

Improving the op-amp model in LTspice makes the simulation fail in the same way despite having P4 properly set, indicating that there may actually be a problem.

In order to more accurately simulate an LM358 the two UniversalOpamp2 s had their parameters adjusted to more closely match the actual component. [4]

- Open-loop gain: 100 000 (100 dB), down from 1 000 000 (120 dB)
- Slew rate: $0.4 V/\mu s$, down from $10 V/\mu s$
- Gain bandwidth product: 1 MHz, down from 10 MHz.

Crossover distortion has been added by adding a pair of antiparallel diodes in series with the output, the distortion of this is reportedly double that of the actual component. [5]

3.1.2 Physical tests

Even with P4 correctly set, the circuit oscillates badly when the input signal is very stong. For small overloads (eg 1100 Lux on the 1000 scale) the circuit works correctly, but for stronger inputs it starts oscillating.

The sensor has been sloppily calibrated in order to make these tests realistic. It's not calibrated well enough for use.

Variables that have been considered:

- Supply voltage: tests have been done at both 19 and 29 volts.
- Input: tests have been done by aiming the LDR at a bright light but also by shorting it out entirely to simulate extreme overload conditions.
- Load on analog_voltage: Both open circuit and a 499 Ω resistor have been used on the analog (voltage) output.
- C14: Including this capacitor to attempt to slow down the opamp may have been a mistake. Tests have been made with the 100pF capacitor and with it removed.

All $2^4 = 16$ tests resulted in oscillation, with one test that was spectacularly bad.

Different capacitance values (10 pF, 1 nF, 10 nF, 100 nF and 1 µF) have also been tested but all of them seem to be about equally bad. Removing the capacitor caused the worst observed oscillation.

The 10% line is 0 V, the 110% line is 10 V. 2 volts/div and 20 μs/div. Both images are at 29 V supply voltage, LDR shorted and 499 Ω load on analog_voltage. With C14 (100 pF) on the left and without on the right.

Figure 12: With vs without C14

3.1.3 Fixing the crossover distortion in the op-amps

The LM358 is known to have crossover distortion, this was speculated to perhaps cause issues when switching from sinking to sourcing current and vice versa.

The crossover can be mitigated by adding a pull up or pull down resistor to either power supply rail to force one of the transistors to always conduct. [3, 5, 1]

Test conditions:

- LDR shorted
- Supply voltage is 29 volts
- Load on analog_voltage is 499 Ω

Various resistance values were tested on the output of IC3a: 4.7, 3.3 and 2.2 $k\Omega$. The lower values seemed to have a larger impact, but there was still significant oscillation. At some point the amplitude of the oscillations appeared to have been cut in half.

A 2.2 $k\Omega$ resistor was added between output and ground on both IC3a and IC3b. This caused no observable improvement in amplitude, but the frequency is now lower.

In the end, the amplitude of the oscillations is just as large with the added resistors as it was without.

2 volts/div and 20 μ s/div on each oscilloscope. Peak to peak signal is approximately 2.5 volts on both. The frequency is lower after adding the one sided load.

Figure 13: Before vs after adding resistors to mitigate oscillations

Figure 14: Modification to attempt to reduce cross-over distortion in op-amp

4 Measurements

The original intent was to create a test instrument in National Instrument's LabView and get voltage and current readings from a DAQ and the illuminance from a proper light meter and some method of subjecting both light meters to the same light for proper calibration. But due to COVID-19 lockdowns, access to proper lab equipment was delayed. Then the lockdowns ended, further complicating this mess.

Calibration and a lot of measurements was done at home using improvised equipment. At a later point an attempt was made to make a LabView test instrument but due to various issues a custom program using a Modbus TCP DAQ was used instead.

4.1 At home calibration and measurements

4.1.1 Equipment

Most of the test leads use bare wires for connecting to the test equipment. Electrical contact was achieved through twisting wires, the connections appear to have hold very well. The only somewhat problematic connection was between the tinned test leads for analog signal output and the multimeter probes as it required twisting a stiff wire around an even stiffer probe.

Copper-clad steel wires with very soft insulation from an old ATA ribbon cable were used as wires for connecting things and as low value resistors.

Light sources	Modified desk lamp, 525 nm LED, natural light through window
Light meter	phyphox on a Samsung SM-G920F
Oscilloscope	Single channel, audio input 44.1 kSamples/s
Strobe light	LED powered from built-in pull-up on a Raspberry Pi (BCM2837B0 SoC)
Power supply	19.1 V only, modified laptop PSU
Voltage/current meter	Axiomet AX-572, V_{ref} measures 2.50 V

Table 2: List of test equipment

The only suitable power supply lying around was a 19 V laptop "charger" that conveniently had DC output on bare wires. A suitable barrel jack plug was taken from a 12 V adapter. It turned out to be quite noisy so a large LC filter was added using a passive PFC choke (unknown inductance) and a bunch of old electrolytic capacitors.

Figure 15: Power supply with LC filter

The desklamp was modified to run from a 12 V DC adapter instead of 12 V AC from the internal transformer. The bulb is a LED equivalent to a 10 W halogen bulb.

An oscilloscope was improvised using the computers audio input and a large capacitor for DC decoupling and antiparallel diodes for protection. The test lead terminated with a 499 Ω resistor was used so it can measure any of the outputs.

Option 1 connected. A 9.4 ohm wire resistor was added in parellel to be able to measure the entire range of the current output.

Figure 16: "Oscilloscope"

4.1.2 Usage of desk lamp & calibration

The ultra low flicker desk lamp was used as the light source for both calibrations and many if not most of the illuminance/voltage curve measurements.

Figure 17: Usage of the modified desk lamp for controlled illumination

This is very far from perfect. See figure 17: For dark settings (lamp further away) the other light sources in the room (5) become more and more significant and those are not in any way controlled. For bright settings (lamp closer), (2) and (3) will have a larger and larger impact on the angle to the LED bulb and (4) will have a relatively large impact.

The sensor on the phone is much more sensitive to the angle of the light source than the LDR.

This method was used for calibrating both the 1000 Lux range and the 100 000 Lux range.

Range	Samples	Voltage at 0 Lx
0 - 1 000 Lx	250	0.1298 V
0 - 100 000 Lx	215	0.0157 V

Table 3: Illuminance/voltage data with phone

4.1.3 Illuminance vs voltage

The 1 000 Lux range was tested mostly with the desklamp but some samples are from other sources such as ambient light and a single LED for lower values. The 100 000 Lux range was tested by pointing the LDR and the light sensor of the phone (somewhat) toward the sun and quickly writing down the illuminance and voltage.

The accuracy of measurements is not represented in the plots, nor is it considered in any calculations relying instead on the sheer number of samples.

Figure 18: Scatter plots for 1 000 Lux range tested with phone

Figure 19: Scatter plots for 100 000 Lux range tested with phone

4.1.4 Time constant

The reader is expected to be familiar with the concept of time constants. If you are not I would recommend this tutorial. This is not an RC circuit, but the same theory applies.

$$\Delta y = y_h - y_l \tag{1}$$

$$y = y_l + \Delta y \cdot (1 - e^{-t/\tau}) \tag{2}$$

$$y = y_h - \Delta y \cdot (1 - e^{-t/\tau}) \tag{3}$$

Equation 2 is the rising edge and equation 3 is the falling edge where y is the instantaneous signal level, Δy is the difference between the steady state low (y_l) and high (y_h) levels, t is the time and τ is the time constant.

The exact steady state levels are not possible to determine due to the AC-coupling on the audio input and noise on the low level. The low point has been chosen quite early and may be inaccurate, see figure 22.

Normally the time constant is taken as the time between the signal starts diverging and the signal being at 63.2 % $(1-e^{-1})$, this is the point where $t=\tau$. τ should be identical independent of where it is measured. The time constant for this circuit has been measured over a larger range to see if something strange may be going on:

 τ_1 Between the start and $1 - e^{-1}$ (63.2 %)

 τ_2 Between $1 - e^{-1}$ and $1 - e^{-2}$ (86.5 %)

 τ_3 Between $1 - e^{-2}$ and $1 - e^{-3}$ (95.0 %)

 τ_4 Between $1-e^{-3}$ and $1-e^{-4}~(98.2~\%)$

See figure 21 or 22 for an example.

The test was performed in the dark with an LED fed with a low-frequency (5 Hz) square wave with sharp edges. The signal measured is the current output through a 9.4 Ω resistor. The voltage levels are unknown.

The test was repeated a few times for both rising and falling edge. The results can be seen in table 4 and table 5.

τ in milliseconds								
Sample	$ au_1 $	$ au_2$	$ au_3$	$ au_4$	τ_{avg}			
1	3.87	6.49	6.96	5.10	5.605			
2	3.89	6.70	6.75	5.50	5.710			
3	3.79	6.59	6.70	5.87	5.738			
4	3.74	6.54	7.06	5.55	5.723			
5	3.79	6.59	7.06	5.14	5.645			
avg	3.816	6.582	6.906	5.432	5.684			
stddev	0.056	0.070	0.153	0.285	0.051			

Total: average = 5.684 ms, standard deviation = 1.221 ms

Table 4: Rising time constant

Some unexpected switching? artifacts are circled in black. Some bumps on the lower half, presumably caused by mains hum, are circled in red. The first red point is being used to get y_l for the falling edge.

Figure 20: Measured signal of 5Hz flashes

 τ in milliseconds

au In miniseconds								
Sample	$ au_1 $	$ au_2$	$ au_3$	$ au_4$	$ au_{avg}$			
1	4.00	4.88	3.64	2.55	3.768			
2	4.00	4.93	3.63	2.44	3.750			
3	3.84	4.41	3.43	2.44	3.530			
4	3.58	3.63	2.70	1.61	2.880			
avg	3.855	4.462	3.350	2.260	3.482			
stddev	0.172	0.522	0.385	0.378	0.360			

Total: average = 3.482 ms, standard deviation = 0.895 ms

Table 5: Falling timeconstant

As can be seen in the tables, τ does not seem to be constant. Potential sources of distortion:

- Noise pick-up (mains hum)
- The high-pass action of the audio input
- Unkown properties of the LDR or circuit
- Capacitance on the GPIO pin

Figure 21: Measuring τ on rising edge

Figure 22: Measuring τ on falling edge

4.2 Testing with proper light meter and Modbus TCP DAQ

More accurate measurements have been taken using a Delta OHM HD2102.1 light meter [6] and a Papouch AD4ETH U [7] to measure the outputs and the supply voltage.

A custom program was written to communicate with the AD4ETH with the following features:

- Several illuminance values are used for each sample, both the mean and standard deviation of the values are logged.
- The AD4ETH measures the analog voltage output, analog current output and the supply voltage. Several samples are used to reduce and measure any noise.
- Measure the outputs through the entire illuminance range at a fixed supply voltage.
- Measure the outputs through the entire supply voltage range at a fixed illuminance.

AD4ETH inputs:

- 1. V_{out} directly measured
- 2. I_{out} measured with a 500 Ω resistor (actually 498)
- 3. V_S measured through a 3:1 voltage divider

Some things are as expected and are of no interest:

- The output signals are independent of the supply voltage as long as it is within a tolerable interval.
- The current output is linearly proportional to the voltage output.
- Not much noise. The DAQ is too limited to get any useful graphs of noise.

Source code of the program is in the section "Modbus TCP program".

In the bottom left is the LDR duct taped to the side of the table, above it is the HD2102. To the right are the main electronics, a Papouch AD4ETH U and a rats nest of wires. The HD2102 can be moved around the LDR to measure and compensate for measurement errors.

The light source can be adjusted.

Figure 23: Measuring U/E curve with proper equipment

The following has been measured:

- day1-1k-illum-19.1V
- day1-1k-illum-24V-ascending
- day1-1k-illum-24V-descending
- day1-1k-illum-29V
- day1-1k-vsupply-bright-widerange
- day1-1k-vsupply-dark
- day1-1k-vsupply-medium
- day2-100k-illum-24V
- day3-1k-illum-24V-ascending
- day3-1k-illum-24V-descending

- day3-scope-adjustable-light
- day3-scope-halogen-unused

The program can be used, either on platforms where it works or if modified, to show the graphs using the plot command, a compatible DAQ is **not** required. The datafile (2020-12-18) is located in the same directory as the program (part2/tests/modbus-tcp). It has only been tested on Debian with Octave installed, but it should work^M on any unix-like operating system with Python 2.7 and Octave installed.

Move into the directory, start ./measure_main.py and run the command load 2020-12-18. Then use the list, plot and help commands as needed.

Figure 24: Hysteresis, measured on the third day

All 1k range varied-illuminance measurements combined. The standard deviation only measures short term noise, not long term drift. The jumps in the average value is due to "long" term drift of just a few days.

Figure 25: Repeatability

Maximum, average and minimum recorded illuminance for each sample. Standard deviation is at the bottom. Each point is based on several measurements with the HD2102. There is some variation as the HD2102 is moved around.

Figure 26: Measurement accuracy

4.3 Regression analysis

Source code of the program is in the section "Regression analysis program".

4.3.1 Repeated theory

$$R \propto E^{-\gamma}$$

R is the resistance, E is the illuminance and γ (gamma) is a "constant" equivalent to the sensitivity of the LDR.

Typical values appear to be around 0.5 which means that the conductance of an LDR is approximately proportional to the square root of the illuminance.

Gamma is usually defined in the datasheet as

$$\log\left(\frac{R_{10}}{R_{100}}\right)$$

where R_{10} is the resistance at 10 lux and R_{100} is the resistance at 100 lux.

The light sensor made in the project converts the conductance of the LDR linearly to a voltage, hence:

$$U \propto E^{\gamma}$$

On a logarithmic scale, gamma will be the slope of the curve and all the gamma plots below are made by taking the derivative function of the model an plotting in a logarithmic scale.

4.3.2 Data

- 1k range measured with multimeter and phone
- 1k range measured with AD4ETH and HD2102
- 100k range measured with multimeter and phone
- 100k range measured with AD4ETH and HD2102

Some models will use the logarithms of the voltage and illuminance as input data.

4.3.3 Models

I have been unable to find a more complex model of the resistance of an LDR, but I suspect γ is not constant over a larger range.

The data will be fitted to six different models:

$$U = k_0 \cdot E^{k_1} + U_{offset} \tag{1}$$

$$U = k_0 \cdot E^{k_1} \tag{2}$$

$$\log_{10}(U) = k_1 \cdot \log_{10}(E) + k_0 \tag{3}$$

$$\log_{10}(U) = k_2 \cdot \log_{10}(E)^2 + k_1 \cdot \log_{10}(E) + k_0 \tag{4}$$

$$\log_{10}(U) = k_3 \cdot \log_{10}(E)^3 + k_2 \cdot \log_{10}(E)^2 + k_1 \cdot \log_{10}(E) + k_0 \tag{5}$$

$$\log_{10}(U) = k_4 \cdot \log_{10}(E)^4 + k_3 \cdot \log_{10}(E)^3 + k_2 \cdot \log_{10}(E)^2 + k_1 \cdot \log_{10}(E) + k_0$$
(6)

where U is the voltage in volts and E the illuminance in lux.

Logarithms are performed before least squares fit for equations three to six.

The offset voltage is hard coded to 0.1298 V for the 1k range and 0.0157 V for the 100k range. These values are measured with the multimeter and may be off for data from the AD4ETH.

4.3.4 Results

Line	Equation
Solid black	1
Solid red	2
Solid blue	3
Dashed black	$\mid 4 \mid$
Dashed red	5
Dashed blue	6

 $[\]gamma$ is observed to be variable, lower at higher illuminance levels.

The observed gamma value is different between tests made with the phone and with the HD2102 hinting that the light sensor in the phone has a noticeable non-linearity.

Figure 27: Regression analysis for 1k range with phone

Parameters: Model k_4 or U_{offset} k_0 k_3 k_2 0.129800 1 0.1089770.6555892 0.1236730.6387743 -1.0013270.6746704 -1.085690 0.789041-0.031058 -0.120805 5 -1.132386 0.9245670.0169016 -0.169340 0.037457-0.002932 -1.1422120.967297

Figure 28: Regression analysis for 1k range with HD2102

Figure 29: Regression analysis for 100k range with phone

Linear-linear illuminance to voltage, logarithmic-logarithmic illuminance to voltage, γ (sensitivity) as a function of logarithmic illuminance

Model	r^2	γ at 10 and 100 Lux	Observations
1 (Solid black)	0.9647	(0.4703)	
2 (Solid red)	0.9647	0.4692	
3 (Solid blue)	0.9784	0.4654	
4 (Dashed black)	0.9787	0.249/0.314	Gamma low and increasing
5 (Dashed red)	0.9814	-18.2/-8.61	Doesn't extrapolate
6 (Dashed blue)	0.9825	-7.62/-7.28	Doesn't extrapolate

Parameters:									
Model	k_0	k_1	k_2	k_3	k_4 or U_{offset}				
1	0.060115	0.470314			0.015700				
2	0.060926	0.469216							
3	-1.198418	0.465375							
4	-0.592551	0.182959	0.032818						
5	44.211228	-31.279125	7.380965	-0.570854					
6	19.756969	0.163843	-6.648575	2.080151	-0.181702				

Figure 30: Regression analysis for 100k range with HD2102

Dataset	γ	at 10 %	% max illur	ninance for	model	n
	1	2	3	4	5	6
Phone 1k	0.52	0.527	0.502	0.504	-	-
HD2102 1k	0.62	0.639	0.675	0.665	0.644	0.693
Phone 100k	0.447	0.445	0.574	0.485	0.480	_
HD2102 100k	0.470	0.469	(!) 0.465	(!) 0.446	_	_

The data points from HD2102 100k only cover a narrow range on the logarithmic scale.

Table 6: Regression analysis summary: typical sensitivity

Model	Observations
2 (linear scale, $U \propto E^{\gamma}$, without offset)	Baseline; observe that 1 and 2 are swapped
	in this table
1 (linear scale, $U \propto E^{\gamma}$, with voltage offset)	Lower r^2 than without the offset, higher γ
	for the 1k range. There's not much use in
	compensating for a voltage offset.
3 (logarithmic scale, straight line)	If there were no errors this would be identical
	to $\#2$. Errors appear smaller in the upper
	end and larger in the lower end compared to
	#2.
4 (logarithmic scale, quadratic polynomial)	The most suited for future work of all the
	tested models. It usually yields reasonable
	looking results, has a non-constant γ that
	decreses with increasing light intensity but
	does not reach zero before 10^{20} lux.
5 (logarithmic scale, cubic polynomial)	Fits data better than #4 as expected. k_3
	appears negative for the 100k range and pos-
	itive for the 1k range, it's likely an artifact
	of over-fitting.
6 (logarithmic scale, 4th order polynomial)	Fits data better than $\#5$ as expected but ap-
	pears to have even more issues in the gamma
	plot and when extrapolating. It behaves sur-
	prisingly well with the data from the 1k range
	tested with the HD2102.

 Table 7: Regression analysis summary: Evaluation of models

Dataset	Evaluation
Phone 1k	γ is low, probably due to non-linear sensor in
	the phone. Also lots of noise due to method
	of measurement.
HD2102 1k	Less noise and even high order polynomials
	behave nicely with the data. γ matches what
	the datasheet for PGM5526 [2] claims. This
	will be used for the 1k range.
Phone 100k	γ is low, probably due to non-linear sensor in
	the phone. Also lots of noise due to method
	of measurement.
HD2102 100k	Insufficient data to generate a useful regres-
	sion.

There is no dataset suitable for the 100k range.

Table 8: Regression analysis summary: Evaluation of datasets

4.3.5 Reversing the formula and adding tolerance

Solve quadratic equation:

$$\log_{10}(U) = k_2 \log_{10}(E)^2 + k_1 \log_{10}(E) + k_0 \to \log_{10}(E) = \frac{-k_1 \pm \sqrt{k_1^2 - 4k_2k_0 + 4k_2 \log_{10}(U)}}{2k_2}$$

$$E = 10^{\left(\frac{-k_1 \pm \sqrt{k_1^2 - 4k_2k_0 + 4k_2\log_{10}(U)}}{2k_2}\right)}$$

Data for the 1k range (HD2102):

k_0	-1.085690
k_1	0.789041
k_2	-0.031058

Apply numbers:

$$E = 10^{\left(\frac{-0.789041 \pm \sqrt{0.487708 - 0.124232 \log_{10}(U)}}{-0.062116}\right)}$$

Deduce that plus minus must be plus (which becomes minus) and simplify further:

$$E = 10^{\left(\frac{0.789041 - \sqrt{0.487708 - 0.124232 \log_{10}(U)}}{0.062116}\right)}$$

To get the accuracy, a percentual tolerance was added large enough to cover a made up number (90%) of data points. The program to add 0.1% at a time until the 90% target is met is in the section "Accuracy measuring program".

Figure 31: Accuracy (AD4ETH & HD2102, 1k range)

5 Summary and evaluation

5.1 Project evaluation

Mostly fine, but some issues:

- "Unevenly engineered", some parts are over engineered while other parts could have used more attention.
- The limiter that is supposed to limit the output voltage to 10 V is oscillating with peaks up to 12 V. And it has been left that way, the root cause has not been found.
- The report structure has been made up as I went along.
- The axes should have been swapped in "Regression analysis", the inverse function of the chosen model looks ridiculous and the cubic and 4th order models would be absolute PITAs to invert.
- Everything is extremely overdue, and yet some parts seem half done.

5.2 Evaluation of the prototype

Figure 32: Topology

The topology of the circuit affects how the data has been summarised in the tables below. The E->U block handles both ranges, see table 9 (1k range) and table 10 (100k range). The U->I block is described only by table 11 (current). Table 12 (digital) covers the signals range_select and over_range which are part of the E->U block as well as the comparator block and the signal digital.

1k range, voltage output		
Parameter	Value	
Accuracy	10 %-ish. See figure 31	
Drift	Observed. Not measured. Primary cause for poor accuracy. See	
	figure 25. Included factors: Short amount of time (around a week),	
	small temperature difference (around 5 K) and exposure to bright	
	light.	
Repeatability	Short term good, see figure 24. Long term poor, see figure 25. This	
	is not due to poor measurements as can be seen in figure 26.	
Hysteresis	None or very little. See figure 24.	
Linearity	Very non-linear. Voltage output is approximately a fractional power	
	of the illuminance	
LDR γ	0.665 at 100 Lx. See dashed black traces in figure 28.	
Rise time (time con-	4.4 to 7.0 ms (quarter time to 98.2%) or 3.7 to 3.9 ms (time to	
stant)	63.2%). See table 4	
Fall time (time con-	3.1 to 3.9 ms (quarter time to $98.2%$) or 3.6 to 4.1 ms (time to	
stant)	63.2%). See table 5	
Output voltage range	0 - 10 V normally. 12 V max if illuminance exceeds 1000 lux, see	
	left trace on figure 12.	
Output load depen-	Not thoroughly tested. 500 Ω load has been tested and seemed fine.	
dence		
Supply voltage depen-	Unaffected by changes in supply voltage.	
dence		
Temperature depen-	Not tested	
dence		
Calibrated voltage to	(0.700041	
illuminance conver-	$E = 10^{\left(\frac{0.789041 - \sqrt{0.487708 - 0.124232 \log_{10}(U)}}{0.062116}\right)}$	
sion formula	E=10	
	E is the illuminance in lux, U is the voltage in volts. $E \pm 9.4\%$ See	
	figure 31	

 ${\bf Table~9:~Summarised~data:~1k~range~voltage~output}$

100k range, voltage output		
Parameter	Value	
No adequate measurements		

 ${\bf Table\ 10:}\ {\bf Summarised\ data:}\ 100k\ range\ voltage\ output$

Current output	
Parameter	Value
Load burden voltage	Not tested
dependence	
Calibrated	Only roughly
Current to voltage conversion formula	$U = (I - 4 mA) \cdot \frac{10 V}{16 mA}$
Linearity	No imperfections observed.
Output current range	Approximately 4 - 20 mA normally. Max 25 mA at 12 V voltage output.
Supply voltage dependence	Unaffected by changes in supply voltage
Temperature dependence	Not tested

 ${\bf Table\ 11:\ Summarised\ data:\ current\ output}$

Digital signals (24V)		
Parameter	Value	
Input:	Works. Connect to supply voltage for logic 1, leave unconnected or	
range_select	connect to ground for logic 0. Intermediary voltages not tested.	
Output: over_ra	May oscillate at high audible frequencies (1-20 kHz). Can be mitigated with a capacitor to ground as the digital outputs can only source current but not sink. Only tested with "light" loads.	
Output: digital	Works. Hysteresis has not been formally measured, max hysteresis is subjectively low. Only tested with "light" loads.	

 ${\bf Table~12:~Summarised~data:~digital~signals}$

6 References

References

- [1] Adding a resistor to reduce crossover distortion in an LM324/LM358. Electronics StackExchange. URL: https://electronics.stackexchange.com/questions/341843/adding-a-resistor-to-reduce-crossover-distortion-in-an-lm324-lm358.
- [2] Token Electronics. PGM CdS Photoresistors. datasheet. URL: https://www.starelec.fi/UserFiles/File/PDF-liitteet2/PGM-TOKEN.pdf.
- [3] Texas Instruments. Application Design Guidelines for LM324/LM358 Devices. TI Application Report. URL: https://www.ti.com/lit/an/sloa277/sloa277.pdf#page=17.
- [4] Texas Instruments. LMx58-N Low-Power, Dual-Operational Amplifiers. TI Datasheet. URL: https://www.ti.com/lit/ds/symlink/lm158-n.pdf.
- [5] LM358 from LT? (crossreference for an LTSpice simulation). EEVBlog forum. URL: https://www.eevblog.com/forum/beginners/lm358-from-lt-(crossreference-for-an-ltspice-simulation)/.
- [6] Delta OHM. HD2102.1, HD2102.2 PHOTO-RADIOMETERS. datasheet. URL: https://www.deltaohm.com/wp-content/uploads/document/DeltaOHM_HD2102.1_2_datasheet_ENG.pdf.
- [7] Papouch AD4ETH U. Product page. URL: https://en.papouch.com/ad4eth-ethernet-measurement-module-p4607/.

7 Code listings

- Some of the Python code requires Python 2.7.
- Octave code may use some Octave specific features and will likely require minor modification to run on Matlab.
- Tested on Debian but should work[™] on any unix-like operating system. Some things will require modification to run on Windows, probably only the plot command in the Modbus TCP program.

Code (or rather this entire project) can be browsed on Gitlab or downloaded (as compressed tape archive). This report is part2.

7.1 Modbus TCP program

Note: It consists of several files. The program should be started from its containing folder. The main program file is measure_main.py.

See also notes in the beginning of "Code listings".

7.1.1 measure_main.py

Path: part2/tests/modbus-tcp/measure_main.py

```
#!/usr/bin/env python2
1
2
    import code
    import os
4
    import pprint
5
    import sys
6
    import time
8
    from modbustcp import ModbusTCP
9
10
    from measure_common import stats, get_analog, get_analog_stats
11
    from measure_timedomain import record_timedomain
12
    from measure_illum import record_illum
13
    from measure_vsupply import record_vsupply
14
15
16
    dataset = {
17
        label: {
18
             'type': type,
19
             'scalars': {
20
                 key: value,
21
22
23
             'plots': [
24
                 {
25
                      'title': title,
26
                      'x-axis': column_name,
27
                      'y-axes': [column_name, ...],
28
                      'xlabel': xlabel,
29
                      'ylabel': ylabel,
30
                      'styles': [style, ...],
31
                 },
32
33
            ],
```

```
'vectors': {
35
                 column_name: [data, ...],
36
37
38
        },
39
40
41
    111
42
43
    def main():
44
        command_functions = {
45
             'illum': record_illum,
46
47
             'vsupply': record_vsupply,
             'scope': record_timedomain,
48
             'load': load_dataset,
49
             'save': save_dataset,
50
             'exit': prog_exit,
51
             'rename': data_rename,
52
             'del': data_del,
53
             'plot': plot,
54
             'list': list_labels,
55
             'scalars': scalars,
56
             'help': disp_help,
57
             'realtime': realtime,
58
             'connect': connect,
59
             'cat': merge_data,
60
             'python': python,
61
             'shell': shell,
62
63
        connection = [None]
64
        dataset = {}
65
        while True:
66
67
            sys.stderr.write('> ')
            sys.stderr.flush()
68
69
            try:
70
                 line = sys.stdin.readline()
             except KeyboardInterrupt:
71
                 sys.stderr.write('\n')
72
                 exit(0)
73
             if line == '': # EOF
                 sys.stderr.write('\n')
75
                 break
76
            if line == '\n':
77
                 continue
78
            parts = filter(None, line.rstrip('\n').split(' '))
79
            command, args = parts[0], parts[1:]
80
            if command not in command_functions:
81
                 sys.stderr.write('Unknown command\n')
82
83
             #command_functions[command](dataset, connection, *args)
84
85
            try:
                 command_functions[command](dataset, connection, *args)
86
            except TypeError:
87
                 sys.stderr.write('Bad number of arguments\n')
88
89
    def disp_help(dataset, connection):
90
        print('''
91
    connect <IP> [<port>]
                                       Connect to AD4ETH
92
                                       Continuosly read analog inputs twice a second
93
    realtime
    load <filename>
                                       Load data from file
```

```
save <filename>
                                      Store data to file
95
    illum <label>
                                       Enter illuminance vs output measuring
96
    vsupply <label> <lux> ...
                                      Enter supply voltage dependence measuring
97
                                      Measure signals for 1 second
    scope <label> <lux> ...
98
    plot <label> [<filename>]
                                      Display or save an Octave plot of <label>
99
    list
                                      List labels in loaded data
100
    scalars <label>
                                      Print scalar values belonging to object
101
    rename <old> <new>
                                      Rename label
102
    del <label>
                                      Delete data by label
103
    cat <label> ... output <label> Merge data to new label
104
                                       Interactive Python to deal with stuff manually
    python
105
    shell [command]
                                      Launch a shell or run a command
106
    help
                                      This message
107
    exit
                                       Exit without saving
108
109
    "illum" measuring
110
         Constant supply voltage, varying illumination
111
112
         Enter illuminance values (*) separated by spaces
         Type "done" to finish
113
         *) The uncertainty of the illuminance values will be recorded as well
114
            as the variation in output signals over 1 second
115
116
     "vsupply" measuring
117
         Constant illumination, varying supply voltage
118
119
         Press enter to take another reading
         Type "done" to finish''')
120
121
    def merge_data(dataset, connection, *args):
122
         if len(args) < 3:
123
             sys.stderr.write('Too few arguments\n')
124
             return
125
         if args[-2] != 'output':
126
127
             sys.stderr.write('Invalid syntax\n')
             return
128
         output_label = args[-1]
129
         input_labels = args[:-2]
130
         first_input = dataset[input_labels[0]]
131
         data_type = first_input['type']
132
         for input_label in input_labels:
133
             if dataset[input_label]['type'] != data_type:
134
                 sys.stderr.write('Mixed types\n')
135
                 return
136
137
         dest = \{\}
138
         dest['type'] = data_type
139
         # Scalars
140
         dest['scalars'] = {}
141
         for scalar in first_input['scalars']:
142
             # Is it stats?
143
             test = first_input['scalars'][scalar]
144
             is_stats = False
145
             if isinstance(test, dict):
146
                 items = {'count', 'min', 'max', 'average', 'stddev'}
147
                 if sorted(items) == sorted(test.keys()):
148
                      is_stats = True
149
             if not is_stats:
150
                 sys.stderr.write('Warning: Unkown scalar: {}\n'.format(scalar))
151
                 dest['scalars'][scalar] = eval(repr(test))
152
             else:
153
154
                 count = 0
```

```
total = 0
155
                 sum_sqr_err = 0
156
                 global_min = test['min']
157
                 global_max = test['max']
158
                 for input_label in input_labels:
159
                      input_stats = dataset[input_label]['scalars'][scalar]
160
                      this_count = input_stats['count']
161
                      count += this_count
162
                      total += this_count * input_stats['average']
163
                      sum_sqr_err += this_count * input_stats['stddev']**2
164
                      global_min = min(global_min, input_stats['min'])
165
                      global_max = min(global_min, input_stats['min'])
166
                 output_stats = {}
167
                 output_stats['count'] = count
168
                 output_stats['average'] = total/count
169
                 output_stats['stddev'] = (sum_sqr_err/count)**.5
170
                 output_stats['min'] = global_min
171
                 output_stats['max'] = global_max
172
                 dest['scalars'][scalar] = output_stats
173
         # Plots
174
         sys.stderr.write('Notice: Using plot data from first data\n')
175
         dest['plots'] = eval(repr(first_input['plots']))
176
         # Vectors
177
         dest['vectors'] = {}
178
         for vector in first_input['vectors']:
179
             dest['vectors'][vector] = []
180
             for input_label in input_labels:
181
                 dest['vectors'][vector] += dataset[input_label]['vectors'][vector]
182
         # Save
183
         dataset[output_label] = dest
184
185
    def python(dataset, connection):
186
187
         code.interact(local=locals())
188
    def shell(dataset, connection, *args):
189
         if args:
190
             os.system(' '.join(args))
191
         else:
192
             os.system('$SHELL || sh')
193
194
    def connect(dataset, connection, address, port="502"):
195
         try:
196
             connection[0] = ModbusTCP(address, int(port))
197
         except:
198
             sys.stderr.write('Connection failed\n')
199
200
    def realtime(dataset, connection):
201
         try:
202
             while True:
203
                 Vout, Iout, Vs = get_analog(connection)
204
                 print('Vout: {:.3f} V\tIout: {:.3f} mA\tVs: {:.1f} V'.format(
205
                      Vout, Iout, Vs))
206
                 time.sleep(0.5)
207
         except KeyboardInterrupt:
208
             sys.stderr.write('\n')
209
             return
210
211
    def list_labels(dataset, connection):
212
         sys.stderr.write('{:50} Type\n{:50} ----\n'.format('Name', '----'))
213
214
         for label in sorted(dataset.keys()):
```

```
sys.stdout.write('{:50} {}\n'.format(label, dataset[label]['type']))
215
216
    def scalars(dataset, connection, label):
217
         try:
218
             print(pprint.pformat(dataset[label]['scalars']))
219
         except KeyError:
220
             sys.stderr.write('No such object: {}.\n'.format(repr(label)))
221
222
    def plot(dataset, connection, label, *args):
223
         def matlab(vector):
             '''Convert Python list of floats to Matlab horizontal vector'''
225
             return '[' + ' '.join(map(str, vector)) + ']'
226
         try:
227
             data = dataset[label]
228
         except KeyError:
229
             sys.stderr.write('No such object: {}.\n'.format(repr(label)))
230
231
             return
232
         if len(args) > 1:
             sys.stderr.write('Too many arguments')
233
             return
234
         elif len(args) == 1:
235
             filename = args[0]
236
         else:
237
             filename = 'tmp-plot'
238
         try:
                                           # Open file only if it doesn't exist
             f = open(filename, 'wx')
240
         except:
241
             sys.stderr.write('Error opening file for writing.\n')
242
             return
243
         f.write('#!/usr/bin/env octave\n')
244
         for fig_index, plot in enumerate(data['plots']):
245
             f.write('fig{} = figure; \n'.format(fig_index))
246
             f.write('hold on;\n')
             f.write('[x{0}, x{0}_order] = sort({1}); n'.format(
248
                 fig_index,
249
                 matlab(data['vectors'][plot['x-axis']])
250
             ))
251
             for y_index, y_name in enumerate(plot['y-axes']):
252
                 f.write('y{0}_{1} = {2}(x{0}_{order}); n'.format(
253
                      fig_index, y_index,
254
                     matlab(data['vectors'][y_name])
255
256
                 f.write('plot(x\{0\}, y\{0\}_{\{1\}}, \{2\});\n'.format(
257
                      fig_index, y_index, repr(plot['styles'][y_index])
258
                 ))
259
             f.write('title({}); \n'.format(repr(plot['title']).replace(r'\\','\\')))
260
             f.write('xlabel({});\n'.format(repr(plot['xlabel'])))
261
             f.write('ylabel({});\n'.format(repr(plot['ylabel'])))
262
             f.write('grid on;\nhold off;\n')
263
         for i in range(len(data['plots'])):
264
             f.write('waitfor(fig{}); \n'.format(i))
265
         f.close()
266
         os.chmod(filename, 0o755)
267
         if len(args) == 0:
268
             os.spawnl(os.P_NOWAIT, filename, filename)
269
             # It appears that without the delay the script is removed before 	extit{0}ctave
             # gets to opening it.
271
             time.sleep(2)
272
             os.unlink(filename)
273
274
```

```
def load_dataset(dataset, connection, filename):
275
         try:
276
             new_dataset = eval(open(filename).read())
277
         except:
278
             sys.stderr.write('Load failed\n')
279
             return
280
         dataset.clear()
281
         for key in list(new_dataset):
282
             dataset[key] = new_dataset[key]
283
             del new_dataset[key]
284
285
    def save_dataset(dataset, connection, filename):
286
287
         try:
             f = open(filename, 'w')
288
             f.write(pprint.pformat(dataset))
289
             f.close()
290
         except:
291
292
             sys.stderr.write('Save failed')
293
    def prog_exit(dataset, connection):
294
        exit(0)
295
296
    def data_rename(dataset, connection, old, new):
297
         if new in dataset:
298
             sys.stderr.write('Destination label exists\n')
299
         try:
300
             dataset[new] = dataset[old]
301
             del dataset[old]
302
         except KeyError:
303
             sys.stderr.write('No such object: {}.\n'.format(repr(old)))
304
305
    def data_del(dataset, connection, label):
306
307
         try:
             del dataset[label]
308
         except KeyError:
309
             sys.stderr.write('No such object: {}.\n'.format(repr(label)))
310
311
312
    if __name__ == '__main__':
313
        main()
314
    7.1.2
            measure_common.py
    Path: part2/tests/modbus-tcp/measure_common.py
    import time
 1
 2
    def stats(data, old=None):
 3
        data = map(float, data)
 4
        if old is None:
 5
             old = {
                 'min': float("inf"),
                 'max': float("-inf"),
 8
                 'count': 0,
 9
                 'average': 0.0,
10
                  'stddev': 0.0,
11
             }
12
        result = {}
13
         result['min'] = min(min(data), old['min'])
14
         result['max'] = max(max(data), old['max'])
15
```

```
count = len(data) + old['count']
16
        result['count'] = count
17
        new_sum_data = sum(data)
18
        old_sum_data = old['average'] * old['count']
19
        avg = (new_sum_data+old_sum_data) / count
20
        result['average'] = avg
21
        new_sum_sqr_err = sum([(x-avg)**2 for x in data])
22
        old_sum_sqr_err = old['stddev']**2 * old['count']
23
        result['stddev'] = ((new_sum_sqr_err+old_sum_sqr_err)/count)**.5
24
        return result
25
26
    def get_analog(connection):
27
28
        Vout, Iout, Vs
29
        111
30
        # TODO
31
        #for i in range(1000):
32
33
             i**i
        #return (0.5*time.time())%10, (0.5*time.time())%16+4, (0.25*time.time())%10+19
34
        # Real code here
35
        response = connection[0].request([
36
            Oxff,
                         # Unit ID
37
            0x04.
                         # Read input register(s)
38
            0x00, 0x00, # Start address 0 for channel 1
39
            0x00, 0x0c # 12 registers (3 channels * 4 registers per channel)
40
41
        # response[0]
                                      # Unit ID echo
42
        assert response[1] == 0x04  # Function code echo, high bit indicates error
43
        assert response[2] == 0x18 # 24 bytes are to be returned
44
        data = response[3:]
45
        Vout = (data[2]*256 + data[3]) / 1000.0
46
        Iout = (data[10]*256 + data[11]) / 500.0
47
        Vs = 3 * (data[18]*256 + data[19]) / 1000.0
48
        return Vout, Iout, Vs
49
50
51
    def get_analog_stats(connection):
        Vout_array = []
52
        Iout_array = []
53
        Vs_array = []
54
        start_t = time.time()
55
        while True:
56
            Vout, Iout, Vs = get_analog(connection)
57
            timestamp = time.time()
58
            Vout_array.append(Vout)
59
            Iout_array.append(Iout)
60
            Vs_array.append(Vs)
61
            if timestamp - start_t > 1:
62
                break
63
        return stats(Vout_array), stats(Iout_array), stats(Vs_array)
64
            measure_illum.py
    Path: part2/tests/modbus-tcp/measure_illum.py
    import pprint
    import sys
2
3
    from measure_common import stats, get_analog, get_analog_stats
4
5
    default_illum = {
```

```
'type': 'illum',
7
        'plots': [
8
            {
9
                 'title': None,
10
                 'xlabel': 'Illuminance (Lux)',
11
                 'ylabel': 'V_{out} (V) [stddev, min, average, max]',
12
                 'x-axis': 'illuminance-average',
13
                 'y-axes': ['Vout-stddev', 'Vout-min', 'Vout-average', 'Vout-max'],
14
                 'styles': ['-s', 's', '-s', 's']
15
            },
16
17
                 'title': None,
18
                 'xlabel': 'Illuminance (Lux)',
19
                 'ylabel': 'I_{out} (mA) [stddev, min, average, max]',
20
                 'x-axis': 'illuminance-average',
21
                 'y-axes': ['Iout-stddev', 'Iout-min', 'Iout-average', 'Iout-max'],
22
                 'styles': ['-s', 's', '-s', 's']
23
            },
24
25
                 'title': None,
26
                 'xlabel': 'V_{out} (V)',
27
                 'ylabel': 'Illuminance (Lux) [stddev, min, average, max]',
28
                 'x-axis': 'Vout-average',
29
                 'y-axes': ['illuminance-stddev', 'illuminance-min',
30
                             'illuminance-average', 'illuminance-max'],
31
                 'styles': ['-s', 's', '-s', 's']
32
            },
33
            {
34
                 'title': None,
35
                 'xlabel': 'I_{out} (mA)',
36
                 'ylabel': 'Illuminance (Lux) [stddev, min, average, max]',
37
                 'x-axis': 'Iout-average',
38
                 'y-axes': ['illuminance-stddev', 'illuminance-min',
39
                             'illuminance-average', 'illuminance-max'],
40
                 'styles': ['-s', 's', '-s', 's']
41
            },
42
            {
43
                 'title': None,
44
                 'xlabel': 'U_{out} (V)',
45
                 'ylabel': 'I_{out} (mA)',
46
                 'x-axis': 'Vout-average',
47
                 'y-axes': ['Iout-average'],
48
                 'styles': ['-s']
49
            }
50
        ],
51
        'scalars': {
52
             'Vs': None
53
        },
54
        'vectors': {
55
             'illuminance-stddev': [],
56
            'illuminance-min': [],
57
            'illuminance-average': [],
58
            'illuminance-max': [],
59
             'Vout-stddev': [],
60
             'Vout-min': [],
61
             'Vout-average': [],
62
             'Vout-max': [],
63
             'Iout-stddev': [],
64
             'Iout-min': [],
65
66
             'Iout-average': [],
```

```
'Iout-max': [],
67
        }
68
    }
69
70
    def record_illum(dataset, connection, label):
71
72
         , , ,
73
         if label in dataset:
74
             if dataset[label]['type'] != 'illum':
75
                 sys.stderr.write('Incompatible\n')
76
                 return
77
         if label not in dataset:
78
             dataset[label] = default_illum.copy()
79
         # Load data
80
         data = eval(pprint.pformat(dataset[label]))
81
         # Always update plot info
82
         data['plots'] = default_illum['plots'][:]
83
         # Update scalars and plot titles
84
         scalars = data['scalars']
85
         # TODO: Vs is replaced by the latest run
86
         \#scalars['Vs'] = stats(get\_analog\_stats(connection)[2], scalars['Vs'])
87
         scalars['Vs'] = get_analog_stats(connection)[2]
88
         Vs = 'V_s is {:.1f} \pm {:.2f} V'.format(
89
             scalars['Vs']['average'],
90
             scalars['Vs']['stddev']
91
92
         data['plots'][0]['title'] = 'Illuminance/V_{out}, ' + Vs
93
         data['plots'][1]['title'] = 'Illuminance/I_{out}, ' + Vs
94
         data['plots'][2]['title'] = 'V_{out}/Illuminance, ' + Vs
         data['plots'][3]['title'] = 'I_{out}/Illuminance, ' + Vs
96
         data['plots'][4]['title'] = 'V_{out}/I_{out}, ' + Vs
97
         # Sample new data
98
         while True:
99
             sys.stderr.write('>> ')
100
             sys.stderr.flush()
101
             line = sys.stdin.readline()
102
             if line == 'done\n':
103
                 break
104
105
             try:
                 illuminance = stats(line.rstrip('\n').split(' '))
107
                 sys.stderr.write('Bad input\n')
108
                 continue
109
             Vout, Iout, _ = get_analog_stats(connection)
110
             for key in ('stddev', 'min', 'average', 'max'):
111
                 data['vectors']['illuminance-'+key].append(illuminance[key])
112
                 data['vectors']['Vout-'+key].append(Vout[key])
113
                 data['vectors']['Iout-'+key].append(Iout[key])
         # Store data
115
         dataset[label] = data
116
    7.1.4
            measure_vsupply.py
    Path: part2/tests/modbus-tcp/measure_vsupply.py
    import pprint
    import sys
 2
 3
 4
    from measure_common import stats, get_analog, get_analog_stats
 5
```

```
default_vsupply = {
6
        'type': 'vsupply',
7
        'plots': [
8
            {
9
                 'title': None,
10
                 'xlabel': 'Supply voltage (V)',
11
                 'ylabel': 'V_{out} (V) [stddev, min, average, max]',
12
                 'x-axis': 'Vs',
13
                 'y-axes': ['Vout-stddev', 'Vout-min', 'Vout-average', 'Vout-max'],
14
                 'styles': ['-s', 's', '-s', 's']
15
            },
16
17
                 'title': None,
                 'xlabel': 'Supply voltage (V)',
19
                 'ylabel': 'I_{out} (mA) [stddev, min, average, max]',
20
                 'x-axis': 'Vs',
21
                 'y-axes': ['Iout-stddev', 'Iout-min', 'Iout-average', 'Iout-max'],
22
                 'styles': ['-s', 's', '-s', 's']
23
            },
24
        ],
25
        'scalars': {
26
             'illuminance': None
27
28
        'vectors': {
29
             'Vs': [],
30
             'Vout-stddev': [],
31
             'Vout-min': [],
32
             'Vout-average': [],
33
             'Vout-max': [],
34
             'Iout-stddev': [],
35
             'Iout-min': [],
36
             'Iout-average': [],
37
38
             'Iout-max': [],
        }
39
    }
40
41
    def record_vsupply(dataset, connection, label, *illuminance):
42
43
        111
44
        if label in dataset:
45
             if dataset[label]['type'] != 'vsupply':
46
                 sys.stderr.write('Incompatible\n')
47
                 return
48
        if label not in dataset:
49
            dataset[label] = default_vsupply.copy()
50
        # Load data
51
        data = eval(pprint.pformat(dataset[label]))
52
        # Always update plot info
53
        data['plots'] = default_vsupply['plots'][:]
54
        # Update scalars and plot titles
55
        scalars = data['scalars']
56
        scalars['illuminance'] = stats(illuminance, scalars['illuminance'])
57
        illum = 'at {:.0f} \\pm {:.0f} Lux'.format(
58
            scalars['illuminance']['average'],
59
            scalars['illuminance']['stddev']
60
61
        data['plots'][0]['title'] = 'Vout {}'.format(illum)
62
        data['plots'][1]['title'] = 'Iout {}'.format(illum)
63
        # Sample new data
64
65
        while True:
```

```
sys.stderr.write('>> ')
66
            sys.stderr.flush()
67
            if sys.stdin.readline() == 'done\n':
68
                 break
69
            Vout, Iout, Vs = get_analog_stats(connection)
70
            data['vectors']['Vs'].append(Vs['average'])
71
            for key in ('stddev', 'min', 'average', 'max'):
72
                 data['vectors']['Vout-'+key].append(Vout[key])
73
                 data['vectors']['Iout-'+key].append(Iout[key])
74
        # Store data
        dataset[label] = data
76
            measure_timedomain.py
    Path: part2/tests/modbus-tcp/measure_timedomain.py
    import pprint
1
    import time
2
3
    from measure_common import stats, get_analog, get_analog_stats
5
    default_timedomain = {
6
        'type': 'timedomain',
7
        'plots': [
8
            {
9
                 'title': None,
10
                 'xlabel': 'time (ms)',
11
                 'ylabel': 'V_{out} (V)',
                 'x-axis': 'time',
13
                 'y-axes': ['Vout'],
14
                 'styles': ['-s']
            },
16
17
                 'title': None,
18
                 'xlabel': 'time (ms)',
19
                 'ylabel': 'I_{out} (mA)',
20
                 'x-axis': 'time',
21
                 'y-axes': ['Iout'],
22
                 'styles': ['-s']
23
            },
24
25
                 'title': None,
26
                 'xlabel': 'time (ms)',
27
                 'ylabel': 'V_s (V)',
28
                 'x-axis': 'time',
29
                 'y-axes': ['Vs'],
30
                 'styles': ['-s']
31
            },
32
        ],
33
        'scalars': {
34
             'illuminance': None
35
        },
36
        'vectors': {
37
             'time': [],
38
             'Vout': [],
39
             'Iout': [],
40
             'Vs': [],
41
        }
42
43
    }
44
```

```
def record_timedomain(dataset, connection, label, *illuminance):
45
46
        ,,,
47
        if label in dataset:
48
            if dataset[label]['type'] != 'timedomain':
49
                sys.stderr.write('Incompatible\n')
50
                return
51
        if label not in dataset:
52
            dataset[label] = default_timedomain.copy()
53
        # Load data
54
        data = eval(pprint.pformat(dataset[label]))
55
        # Always update plot info
56
        data['plots'] = default_timedomain['plots'][:]
57
        # Update scalars and plot titles
58
        scalars = data['scalars']
59
        scalars['illuminance'] = stats(illuminance, scalars['illuminance'])
60
        illum = 'at {:.0f} \\pm {:.0f} Lux'.format(
61
62
            scalars['illuminance']['average'],
            scalars['illuminance']['stddev']
63
        )
64
        data['plots'][0]['title'] = 'Vout {}'.format(illum)
65
        data['plots'][1]['title'] = 'Iout {}'.format(illum)
66
        data['plots'][2]['title'] = 'Vs {}'.format(illum)
67
        # Sample new data
68
69
        start_t = time.time()
        t = 0
70
        while t < 1:
71
            Vout, Iout, Vs = get_analog(connection)
72
            t = time.time() - start_t
            data['vectors']['Vout'].append(Vout)
74
            data['vectors']['Iout'].append(Iout)
75
            data['vectors']['Vs'].append(Vs)
76
            data['vectors']['time'].append(t*1000)
77
        # Store data
78
        dataset[label] = data
79
    7.1.6
            modbustcp.py
   Path: part2/tests/modbus-tcp/modbustcp.py
    # Python 2 only (at the moment)
2
    import socket
3
4
    class ModbusTCP():
5
6
        This is a synchronous Modbus TCP client.
7
8
        foo = ModbusTCP(address, port=502)
9
        response = foo.request([unit_id, function, data_bytes ...])
10
11
        def __init__(self, address, port=502):
12
            self.conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
13
            self.conn.connect((address, port))
14
            self.sequence_id = 0
15
        def request(self, modbus_request):
17
18
            modbus\_request = [
19
                unit_identifier,
20
```

```
function_code,
21
                data_bytes ...
22
            ]
23
            111
24
            datalen = len(modbus_request)
25
            modbus_tcp_request_packet = [
26
                (self.sequence_id >> 8) & Oxff, # Transaction identifier, high
27
                self.sequence_id & Oxff,
                                                  # Transaction identifier, low
28
                                                  # Protocol identifier, high & low
                0,0,
29
                (datalen >> 8) & Oxff,
                                                  # Length field, high
30
                datalen & Oxff,
                                                  # Length field, low
31
            ]
32
            modbus_tcp_request_packet += modbus_request
33
            # send of the request
34
            self.conn.sendall(''.join(map(chr, modbus_tcp_request_packet)))
35
            # Response
36
            response_head = map(ord, self.conn.recv(6))
37
            response_transaction = response_head[0]*256 + response_head[1]
38
            response_protocol = response_head[2]*256 + response_head[3]
39
            response_length = response_head[4]*256 + response_head[5]
40
            assert response_transaction == self.sequence_id
41
            assert response_protocol == 0
42
            # Get the Modbus part of the response
43
            self.sequence_id += 1
44
45
            return map(ord, self.conn.recv(response_length))
46
        def __del__(self):
47
            self.conn.close()
48
```

7.2 Regression analysis program

Note: The program should be started from its containing folder. It needs the *.m files which contain the measurement data.

See also notes in the beginning of "Code listings".

Path: part2/tests/regression-analysis/regression

```
#!/usr/bin/env octave
    # Needs package "optim"
3
   pkg load optim
4
5
   % Make regressions and plots for E-U data
6
   % DATA: 0-1000 and 0-100000
   % PLOTS: lin-lin, log-log, gamma
   % LINEAR LEAST SQUARES: E^qamma + zero_offset, E^qamma
9
   % LOGARITHMIC LEAST SQUARES: 1st-4th power polynomials
10
11
12
    % Font size:
                          22
13
   % Scatter ball size: 49
14
15
16
   function [out_E, out_U] = logsafe(E, U)
17
        out_E = [];
        out_U = [];
18
        for i = 1:size(E)(2)
19
            if E(i) > 0 && U(i) > 0
20
                out_E = [out_E E(i)];
21
                out_U = [out_U U(i)];
22
```

```
end
23
        end
24
    end
25
26
27
    function myplot(E, U, interp_arr_E, interp_arr_U, E_range, plot_title)
28
        style = {"k" "r" "b" "--k" "--r" "--b"};
29
        % solid black, solid red, solid blue, dashed black, dashed red, dashed blue
30
31
        % LINEAR
32
        f = figure('DefaultAxesFontSize', 8);
33
        hold on;
34
        %plot(E, U, 'dm');
35
        scatter(E, U, 25, 'm', 'MarkerFaceColor', 'm');
36
        for i = 1:size(interp_arr_E)(2)
37
            interp_E = interp_arr_E{1,i};
38
            interp_U = interp_arr_U{1,i};
39
            plot(interp_E, interp_U, style{1,i}, "linewidth", 2)
40
        end
41
        axis([0 1.2*10^E_range 0 12]);
42
        if E_range < 4
43
            xticks([0:5*10^(E_range-2):1.2*10^E_range]);
44
        else
45
            xticks([0:10*10^(E_range-2):1.2*10^E_range]);
46
        end
        yticks([0:0.5:12]);
48
        xlabel('Illuminance E [Lx]');
49
        ylabel('Voltage U [V]');
50
        title(['Lin-lin ' plot_title]);
51
        grid on;
52
        hold off;
53
55
        % LOGARITHMIC
        f2 = figure('DefaultAxesFontSize', 8);
56
        hold on;
57
        scatter(log10(E), log10(U), 25, 'm', 'MarkerFaceColor', 'm');
58
        %plot(log10(E), log10(U), 'dm');
59
        for i = 1:size(interp_arr_E)(2)
60
            interp_E = interp_arr_E{1,i};
61
            interp_U = interp_arr_U{1,i};
            plot(log10(interp_E), log10(interp_U), style{1,i}, "linewidth", 2)
63
64
65
        axis([-1 E_range+0.1 -2 1.33]);
        xticks([-1:0.25:E_range]);
66
        yticks([-2:0.25:1.25]);
67
        %xlabel('Illuminance\ lg(E)\ (log_{10}(Lx))');
68
        %ylabel('Voltage lg(U) (log_{10}(V))');
69
        xlabel('Log illuminance [log_{10}(Lx)]');
        ylabel('Log voltage [log_{10}(V)]');
71
        title(['Log-log ' plot_title]);
72
        grid on;
73
        hold off;
74
75
        % GAMMA
76
        f3 = figure('DefaultAxesFontSize', 8);
77
78
        for i = 1:size(interp_arr_E)(2)
79
            [interp_E, interp_U] = logsafe(interp_arr_E{1,i}, interp_arr_U{1,i});
80
            interp_gamma = diff(log10(interp_U))./diff(log10(interp_E));
81
            plot(log10(interp_E)(1:end-1), interp_gamma, style{1,i}, "linewidth", 2)
82
```

```
83
         end
         axis([-1 E_range+1 0.2 1]);
84
         xticks([-1:0.5:E_range+1]);
85
         yticks([0.2:0.05:1]);
86
         %xlabel('Illuminance decade lg(E) (log_{10}(Lx))');
87
         %ylabel('Gamma \setminus gamma (-log(\setminus Omega)/log(Lx))');
88
         xlabel('Log illuminance [log_{10}(Lx)]');
89
         ylabel('Gamma \gamma [-log(\Omega)/log(Lx)]');
90
         title(['Variable gamma ' plot_title]);
91
         grid on;
92
        hold off;
93
94
        waitfor(f);
95
         waitfor(f2);
96
         waitfor(f3);
97
98
    end
99
100
    function interpolate(E, U, data_name, is_100k)
101
         plot_arr_E = {};
102
        plot_arr_U = {};
103
104
         if is_100k
105
             plot_name = [data_name ' (0 to 100 000 lux)'];
106
107
         else
             plot_name = [data_name ' (0 to 1 000 lux)'];
108
         end
109
        printf("%s\n", plot_name);
110
111
         % Excess is needed for the gamma plot
112
         % E range for linear interpolation
113
         if is_100k
114
             interp_E = [[0:0.01:9.99] [10:0.1:99.9] [100:1:999] [1000:10:9990] ...
115
                          [10000:100:99900] [10^5:10^3:10^6]];
116
         else
117
             interp_E = [[0:0.01:9.99] [10:0.1:99.9] [100:1:999] [1000:10:10000]];
118
         end
119
120
         if is_100k
121
             offset = 0.0157;
122
         else
123
             offset = 0.1298;
124
125
         end
126
         % TRACE 1
127
         func = @(E, param) param(1) * E.^param(2) + offset;
128
         pin = [0.1 \ 0.5];
129
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
130
                 _stdresid1, _Z1, r2] = leasqr(E, U, pin, func);
131
         interp_U = func(interp_E, param);
132
         printf("[SOLID BLACK]\tlin with offset:\tr^2 is %f, Gamma is %f\n",
133
                 r2, param(2)
134
         printf("\t%f\t%f\n", param(1), param(2), offset)
135
        plot_arr_E = {interp_E};
136
        plot_arr_U = {interp_U};
137
138
139
         func = Q(E, param) param(1) * E.^param(2);
140
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
141
142
                 _stdresid1, _Z1, r2] = leasqr(E, U, pin, func);
```

```
interp_U = func(interp_E, param);
143
        printf("[SOLID RED]\tlin without offset:\tr^2 is %f, Gamma is %f\n",
144
                 r2, param(2)
145
        printf("\t%f\t%f\n", param(1), param(2))
146
        plot_arr_E = {plot_arr_E{1,1:end} interp_E};
147
        plot_arr_U = {plot_arr_U{1,1:end} interp_U};
148
149
         % Excess is needed for the gamma plot
150
         % E range for logarithmic interpolation
151
         [E, U] = logsafe(E, U);
152
        if is_100k
153
            interp_E = [-1:0.01:6];
154
        else
            interp_E = [-1:0.01:4];
156
        end
157
158
         % TRACE 3
159
        func = @(logE, param) param(1) + param(2)*logE;
160
        pin = [0.1 \ 0.5];
161
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
162
                 _stdresid1, _Z1, r2] = leasqr(log10(E), log10(U), pin, func);
163
        interp_U = func(interp_E, param);
164
        printf("[SOLID BLUE]\tlog 1st:\t\tr^2 is %f, Gamma is %f\n", r2, param(2))
165
        printf("\t%f\t%f\n", param(1), param(2))
166
        plot_arr_E = {plot_arr_E{1,1:end} 10.^interp_E};
167
        plot_arr_U = {plot_arr_U{1,1:end} 10.^interp_U};
168
169
        % TRACE 4
170
        func = @(logE, param) param(1) + param(2)*logE + param(3)*logE.^2;
171
        pin = [0.1 \ 0.5 \ 0];
172
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
173
                 _stdresid1, _Z1, r2] = leasqr(log10(E), log10(U), pin, func);
174
        interp_U = func(interp_E, param);
175
        printf("[DASHED BLACK]\tlog 2nd:\t\t")
176
        printf("r^2 is %f, Gamma is [%f + (%f * decade)]\n",
177
                 r2, param(2), 2*param(3))
178
        printf("\t%f\t%f\n", param(1), param(2), param(3))
179
        plot_arr_E = {plot_arr_E{1,1:end} 10.^interp_E};
180
        plot_arr_U = {plot_arr_U{1,1:end} 10.^interp_U};
181
         % TRACE 5
183
        func = @(logE, param) param(1) + param(2)*logE + param(3)*logE.^2 ...
184
                 + param(4)*logE.^3;
185
        pin = [0.1 \ 0.5 \ 0 \ 0];
186
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
187
                 _stdresid1, _Z1, r2] = leasqr(log10(E), log10(U), pin, func);
188
        interp_U = func(interp_E, param);
189
        printf("[DASHED RED]\tlog 3rd:\t\t")
        printf("r^2 is %f, Gamma is [%f + (%f * decade) + (%f * decade^2)]\n",
191
                 r2, param(2), 2*param(3), 3*param(4))
192
        printf("\t%f\t%f\t%f\t%f\n", param(1), param(2), param(3), param(4))
193
        plot_arr_E = {plot_arr_E{1,1:end} 10.^interp_E};
194
        plot_arr_U = {plot_arr_U{1,1:end} 10.^interp_U};
195
196
         % TRACE 6
197
        func = @(logE, param) param(1) + param(2)*logE + param(3)*logE.^2 ...
198
                 + param(4)*logE.^3 + param(5)*logE.^4;
199
        pin = [0.1 \ 0.5 \ 0 \ 0];
200
         [_f1, param, _kvg1, _iter1, _corp1, _covp1, _covr1, ...
201
202
                 _stdresid1, _Z1, r2] = leasqr(log10(E), log10(U), pin, func);
```

```
interp_U = func(interp_E, param);
203
         printf("[DASHED BLUE]\tlog 4th:\t\tr^2 is %f, Gamma is ", r2)
204
         printf("[\%f + (\%f * decade) + (\%f * decade^2) + (\%f * decade^3)]\n",
205
             param(2), 2*param(3), 3*param(4), 4*param(5))
206
         printf("\t%f\t%f\t%f\t%f\t%f\n", param(1), param(2), param(3), param(4),
207
             param(5))
208
         plot_arr_E = {plot_arr_E{1,1:end} 10.^interp_E};
209
         plot_arr_U = {plot_arr_U{1,1:end} 10.^interp_U};
210
211
         % Display traces
         if is_100k
213
             myplot(E, U, plot_arr_E, plot_arr_U, 5, plot_name);
214
215
         else
             myplot(E, U, plot_arr_E, plot_arr_U, 3, plot_name);
216
         end
217
         printf("\n");
218
219
    end
220
    function myscatter(E, U, plot_title, is_100k)
221
         if is_100k
222
             E_range = 5;
223
         else
224
             E_range = 3;
225
226
         end
         linfig = figure('DefaultAxesFontSize', 8);
228
         hold on;
229
         scatter(E, U, 25, 'k', 'MarkerFaceColor', 'k');
230
         axis([0 1.1*10^E_range 0 10.5]);
231
         if E_range < 4
232
             xticks([0:5*10^(E_range-2):1.1*10^E_range]);
233
234
         else
235
             xticks([0:10*10^(E_range-2):1.1*10^E_range]);
         end
236
         yticks([0:0.5:10.5]);
237
238
         xlabel('Illuminance E (Lx)');
         ylabel('Voltage U (V)');
239
         title([plot_title ' lin-lin']);
240
         grid on;
241
         hold off;
242
243
         logfig = figure('DefaultAxesFontSize', 8);
244
         hold on;
245
         scatter(log10(E), log10(U), 25, 'k', 'MarkerFaceColor', 'k');
246
         axis([-0.1 E_range+0.1 -2 1.1]);
247
         xticks([0:0.5:E_range]);
248
         yticks([-2:0.5:1]);
249
         xlabel('Log illuminance [log_{10}(Lx)]');
         ylabel('Log voltage [log_{10}(V)]');
251
         title([plot_title ' log-log']);
252
         grid on;
253
         hold off;
254
255
         waitfor(linfig);
256
         waitfor(logfig);
257
    end
258
259
260
     %set(0, "defaultaxesfontname", "Helvetica")
261
262
    graphics_toolkit("fltk") %("gnuplot")
```

```
263
     [E, U] = data_1k();
264
    %myscatter(E, U, '1 000 Lux (with phone)', false);
265
    interpolate(E, U, '1 000 Lux (with phone)', false);
266
267
     [E, U] = data_1k_ad4eth();
268
    interpolate(E, U, '1000 Lux (AD4ETH)', false);
269
270
     [E, U] = data_100k();
271
    %myscatter(E, U, '100 000 Lux (with phone)', true);
    interpolate(E, U, '100 000 Lux (with phone)', true);
273
274
    [E, U] = data_100k_ad4eth();
275
    interpolate(E, U, '100 000 Lux (AD4ETH)', true);
276
```

7.2.1 Accuracy measuring program

Note: The program should be started from its containing folder. It needs one of the *.m files which contains the measurement data.

See also notes in the beginning of "Code listings".

Path: part2/tests/regression-analysis/ad4eth-1k-accuracy

```
#!/usr/bin/env octave
1
2
    function pass_rate = test_tolerance(E_points, U_points, solution, tolerance)
3
        passes = 0;
4
        fails = 0;
5
        for i = 1:size(U_points)(2)
6
            if U_points(i) <= 0</pre>
7
8
                 continue
            end
9
            calculated_E = solution(U_points(i));
10
            calculated_error = E_points(i)/calculated_E;
11
            if calculated_error > 1+tolerance || calculated_error < 1-tolerance
12
                 fails += 1;
13
            else
14
                 passes += 1;
15
            end
16
        end
17
        pass_rate = passes/(passes+fails);
18
19
    end
20
    function passrate_vector = tolerance_to_passrate(E, U, sol, tolerance_vector)
21
        passrate_vector = [];
22
        for i = 1:size(tolerance_vector)(2)
23
            passrate_vector = [passrate_vector test_tolerance(E,U,sol, ...
24
                                                    tolerance_vector(i))];
25
        end
26
    end
27
28
    function tolerance = find_tolerance(E,U,sol,target_passrate)
29
        tolerance = 0;
30
        while test_tolerance(E,U,sol, tolerance) < target_passrate</pre>
31
            tolerance += 0.001;
32
        end
33
    end
34
35
    [E_points, U_points] = data_1k_ad4eth();
36
```

```
37
    solution = @(U) 10.^((0.789041-sqrt(0.487708-0.124232*log10(U)))/0.062116);
38
39
    {\tt tolerance} \; = \; {\tt find\_tolerance}({\tt E\_points}, {\tt U\_points}, {\tt solution}, \; 0.90); \\
40
    printf("Tolerance: %.1f%%\n", tolerance*100)
41
42
    U_range = [0.01:0.01:11];
43
44
    tolerance_vector = [0:0.001:0.15];
45
    passrate_vector = tolerance_to_passrate(E_points,U_points,solution, ...
46
                                                tolerance_vector);
47
48
    fig = figure;
49
    hold on
50
   plot(U_points, E_points, "*")
51
    plot(U_range, solution(U_range), "-")
52
    plot(U_range, (1-tolerance)*solution(U_range), "-")
    plot(U_range, (1+tolerance)*solution(U_range), "-")
54
    xlabel("Voltage (V)")
55
    ylabel("Illuminance (Lx)")
56
    title(sprintf("Voltage to illuminance, with %.1f%% tolerance (1k AD4ETH)", ...
                   100*tolerance))
58
    grid on
59
    axis([0 11 0 1200])
60
    xticks([0:1:11])
61
62
    yticks([0:100:1200])
    hold off
63
64
   fig2 = figure;
   hold on
66
   plot(100*tolerance_vector, 100*passrate_vector, "-")
67
   xlabel("Tolerance \\pm%")
69
    ylabel("Points within range (%)")
   title("Tolerance vs points in area (1k AD4ETH)")
70
    grid on
71
    axis([0 15 0 100])
72
    xticks([0:1:15])
73
    yticks([0:10:100])
74
    hold off
75
76
    waitfor(fig)
77
    waitfor(fig2)
```